Solutions to Statistics Problems

1(a) We are given the two pdfs

$$
\begin{aligned}
f(x \mid \mathrm{s}) & =3(x-1)^{2} \\
f(x \mid \mathrm{b}) & =3 x^{2}
\end{aligned}
$$

with $0 \leq x \leq 1$, and we want to select events of type s by requiring $x<x_{\text {cut }}$, with $x_{\text {cut }}=0.1$. The probabilities to select events of type s and b are

$$
\begin{aligned}
P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) & =\int_{0}^{x_{\mathrm{cut}}} f(x \mid \mathrm{s}) d x=\left.(x-1)^{3}\right|_{0} ^{x_{\mathrm{cut}}}=\left(x_{\mathrm{cut}}-1\right)^{3}+1 \\
& =(0.1-1)^{3}+1=0.271 \\
P\left(x<x_{\mathrm{cut}} \mid \mathrm{b}\right) & =\int_{0}^{x_{\mathrm{cut}}} f(x \mid \mathrm{b}) d x=\left.x^{3}\right|_{0} ^{x_{\mathrm{cut}}}=x_{\mathrm{cut}}^{3} \\
& =(0.1)^{3}=0.001
\end{aligned}
$$

(b) The signal purity is the probability for an event to be signal given that it is selected. To find this from the available ingredients we apply Bayes' theorem,

$$
P\left(\mathrm{~s} \mid x<x_{\mathrm{cut}}\right)=\frac{P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}}{P\left(x<x_{\mathrm{cut}} \mid \mathrm{s}\right) \pi_{\mathrm{s}}+P\left(x<x_{\mathrm{cut}} \mid \mathrm{b}\right) \pi_{\mathrm{b}}}=\frac{\left(1+\left(x_{\mathrm{cut}}-1\right)^{3}\right) \pi_{\mathrm{s}}}{\left(1+\left(x_{\mathrm{cut}}-1\right)^{3}\right) \pi_{\mathrm{s}}+x_{\mathrm{cut}}^{3} \pi_{\mathrm{b}}},
$$

where $\pi_{\mathrm{s}}=0.01$ and $\pi_{\mathrm{b}}=0.99$ are the given prior probabilities. Plugging in the numbers gives

$$
P\left(\mathrm{~s} \mid x<x_{\mathrm{cut}}\right)=\frac{0.271 \times 0.01}{0.271 \times 0.01+0.001 \times 0.99}=0.732
$$

$\mathbf{1 (c)}$ For an event with an observed value of x, the probability that it is background is again given by Bayes' theorem,

$$
P(\mathrm{~b} \mid x)=\frac{f(x \mid \mathrm{b}) \pi_{\mathrm{b}}}{f(x \mid \mathrm{b}) \pi_{\mathrm{b}}+f(x \mid \mathrm{s}) \pi_{\mathrm{s}}}=\frac{x^{2} \pi_{\mathrm{b}}}{x^{2} \pi_{\mathrm{b}}+(x-1)^{2} \pi_{\mathrm{s}}}=\frac{0.05^{2} \times 0.99}{0.05^{2} \times 0.99+0.95^{2} \times 0.01}=0.215 .
$$

$\mathbf{1}(\mathrm{d})$ The pdf $f(x \mid \mathrm{b})=3 x^{2}$ is concentrated towards one, and $f(x \mid \mathrm{s})=3(x-1)^{2}$ towards zero. So if we observe $x=0.05$, then values of x less than this represent less compatibility with $f(x \mid \mathrm{b})$. Therefore the p-value of the background hypothesis can be obtained as

$$
p=\int_{0}^{x} f\left(x^{\prime} \mid \mathrm{b}\right) d x^{\prime}=\int_{0}^{x} 3 x^{\prime 2} d x^{\prime}=x^{3}=0.05^{3}=1.25 \times 10^{-4} .
$$

This is not the same as the probability for the event to be of type b, but rather the probability, assuming b , to observe x with equal or lesser compatibility with b than what was found with the actual data. Unlike the probability $P(\mathrm{~b} \mid x)$ found in (c), the p-value is independent of the prior probability for the event to be of type b.
$\mathbf{1}(\mathbf{e})$ To generate values of x following $f(x \mid \mathrm{b})=3 x^{2}(0 \leq x \leq 1)$ using the acceptancerejection method, we need to enclose the pdf in a box of height $f_{\max }=3$ and covering the range $0 \leq x \leq 1$, as shown in Fig. 1 .

Figure 1: Illustration of the acceptance-rejection method.

To generate x we must (1) generate u uniform between 0 and $f_{\max } ;(2)$ generate x uniform between $x_{\min }=0$ and $x_{\max }=1 ;(3)$ if $u<f(x)$, accept x, otherwise reject. Points accepted by this procedure will follow the pdf $f(x)$.

To generate x values using the transformation method, we set the cumulative distribution function equal to r where r is uniformly distributed between 0 and 1 . The cumulative distribution is

$$
F(x \mid \mathrm{b})=\int_{0}^{x} f\left(x^{\prime} \mid \mathrm{b}\right) d x^{\prime}=\int_{0}^{x} 3 x^{\prime 2} d x^{\prime}=x^{3}
$$

Setting this equal to r and solving for x gives the desired transformation

$$
x(r)=r^{1 / 3}
$$

By evaluating this function with r values that are uniformly distributed in $[0,1]$, one obtains x values that follow $f(x \mid \mathrm{b})$.
$\mathbf{1}(\mathbf{f})$ We are now given two joint pdfs for x and y,

$$
\begin{aligned}
f(x, y \mid \mathrm{s}) & =6(x-1)^{2} y \\
f(x, y \mid \mathrm{b}) & =6 x^{2}(1-y)
\end{aligned}
$$

with $0 \leq x \leq 1$ and $0 \leq y \leq 1$. According to the Neyman-Pearson lemma, the test statistic that gives the highest power for a given significance level test (in this case equivalent to having the highest signal purity for a given efficiency), is given by the likelihood ratio

$$
t(x)=\frac{f(x, y \mid \mathrm{s})}{f(x, y \mid \mathrm{b})}=\frac{(x-1)^{2} y}{x^{2}(1-y)}
$$

