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Abstract

An approximate expression is derived for the expected discovery significance for a
Poisson counting experiment in which the background rate is constrained by a Poisson
control measurement. The formula is based on a test statistic using the profile likelihood
ratio and the expected significance is approximated by using the Asimov data set, as
outlined in Ref. [1]. The validity of the new expression is compared with Monte Carlo
results and to the other formulae for expected significance often used in particle physics.
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1 Introduction

In a search for a new particle physics process one may observe a certain number number of
events, n, modeled as following a Poisson distribution with a mean of s + b, where s and
b represent the expected numbers of events from the (new) signal process and background
processes, respectively. Here this will be referred to as a Poisson counting experiment. To
establish a discovery of the signal, one can calculate the p-value of the hypothesis that s = 0,
or equivalently it is convenient to use the Gaussian significance, Z. This is related to the
p-value by

Z = Φ−1(1− p) , (1)

where Φ−1 is the quantile of the standard Gaussian (inverse of the cumulative distribution).
For the case where the p-value refers to the background-only (s = 0) hypothesis, we will
refer to the corresponding Z value as the discovery significance. In particle physics a widely
used threshold for a discovery has been a p-value of 2.9 × 10−7 or less, corresponding to a
significance of Z = 5 or more.

When designing a new experiment it is important to know what discovery significance to
expect if a certain signal model is in fact true. For this one can report the mean or median
value of Z under assumption of some nominal value of s, i.e., assuming that n will have a
mean of s+ b. As noted in Ref. [1], because the p-value and significance Z have a nonlinear,
monotonic relation, it is convenient to take “expected significance” to refer to the median,
so that the median Z is given by Z evaluated with the median p.

In Sec. 2 the basic formalism of quantifying discovery significance with a statistical test is
reviewed. An often used measure of expected discovery significance for the Poisson counting
experiment is given by s/

√
b. In Sec. 3 we examine the rationale behind this formula and

discuss its extension to the case where the value of b is uncertain. In Ref. [1], an improvement
over s/

√
b was derived for the case of Poisson distributed n, and it was shown that the new

expression is a better approximation to the true median discovery significance especially
when the condition s ≪ b does not hold. For completeness this is reviewed in Sec. 4. The
primary result of this note is an extension of the Poisson-based formula for expected discovery
significance to the case where b is uncertain, and is given in Eq. (20) of Sec. 5. Conclusions
are given in Sec. 6.

2 Discovery as a statistical test

In particle physics one frequently quantifies the significance of an observed signal by quoting
the p-value of the background-only hypothesis, i.e., that of s = 0. One method for defining
the p-value for a hypothesized value of s has been to construct a test statistic based on the
profile likelihood ratio,

λ(s) =
L(s,

ˆ̂
θ(s))

L(ŝ, θ̂)
. (2)

Here L(s,θ) is the likelihood function that represents the probability for the measurement
(i.e., the number of events n plus any subsidiary measurements), under assumption of the
signal parameter s and any additional (nuisance) parameters θ. The double-hat notation
in the numerator of Eq. (2) refers to the values of θ that maximize the likelihood under
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assumption of the specified value of s, and the single hats in the denominator refer to the
values that give the unconditional maximum of the likelihood (the ML estimators). The
numerator is thus the profile likelihood; the denominator is the maximum of the likelihood.

In Ref. [1] the profile likelihood ratio was used as the basis of a test statistic defined as

q0 =







−2 lnλ(0) ŝ ≥ 0 ,

0 ŝ < 0 .
(3)

This is defined so that large values of q0 correspond to increasing disagreement between the
data and the hypothesized value of s = 0. Although we consider here only the case where a
physical signal model has s > 0, the estimator ŝ is defined as the value that maximizes the
likelihood even if this is negative. This occurs if the number of observed events is smaller
than the expected background. The statistic q0 is defined as zero for ŝ < 0 so that it reflects
a discrepancy between the data and hypothesis only in the case where the observed signal
rate is positive.

3 s/
√
b and related measures of discovery sensitivity

In particle physics the quantity s/
√
b has been widely used as a measure of expected discovery

significance. The rationale behind this formula is that a Poisson distributed quantity n with
a large mean value s+b can be approximated by a Gaussian distributed variable x with mean
s + b and standard deviation

√
s+ b. The p-value of the background-only hypothesis given

an observation x is therefore

p = 1− Φ

(

x− µ

σ

)

= 1− Φ

(

x− b√
b

)

, (4)

where µ = b and σ =
√
b refer to the mean and standard deviation of x under assumption of

s = 0. Using this with Eq. (1) gives the discovery significance

Z =
x− b√

b
. (5)

The median (here equal to the mean) Z under assumption of a given value of s is therefore

med[Z|s] = s√
b
. (6)

The intuitive explanation of this formula is that the standard deviation of n assuming back-
ground only is

√
b, and therefore the ratio s/

√
b represents the size of the signal divided by

the statistical error on n expected assuming signal is absent.

Often the expected number of background events is not known exactly but has some
systematic uncertainty characterized by a standard deviation σb. In this case, one may
generalize Eq. (6) to account both the statistical and systematic error in b by replacing

√
b

by the the quadratic sum of
√
b and σb, so that the median significance becomes

med[Z|s] = s
√

b+ σ2
b

. (7)
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This formula has been used in particle physics as a measure of expected discovery significance
for processes where the uncertainty in the expected background cannot be neglected. In Sec. 5
a formal justification for Eq. (7) will be given and the limits of its validity investigated.

4 Poisson case with known background

If the expected number of background events, b, is known with negligible uncertainty, then
the likelihood function for the Poisson counting experiment is

L(s) =
(s+ b)n

n!
e−(s+b) . (8)

In Ref. [1] this problem was investigated using the test statistic q0 as defined in Eq. (3). For
a sufficiently large expected number of events, one can show using Wilks’ theorem (see, e.g.,
[1] and references therein) that the discovery significance can be approximated by Z =

√
q0.

For the present problem this gives

Z =

√

2

(

n ln
n

b
+ b− n

)

(9)

for n > b and Z = 0 otherwise. It was also shown in Ref. [1] that one can approximate the me-
dian significance by replacing the data by the corresponding expectation values (the so-called
Asimov data set). Substituting s + b for n in Eq. (9) thus gives the Asimov approximation
for the median significance, denoted here by ZA:

ZA =

√

2

(

(s+ b) ln

(

1 +
s

b

)

− s

)

. (10)

Expanding the logarithm in s/b one finds

ZA =
s√
b
(1 +O(s/b)) . (11)

Thus the full expression for ZA in Eq. (10) reduces to the widely used formula s/
√
b in the

limit s ≪ b.

Although s/
√
b has been widely used for expected discovery significance in cases where

s+ b is large, one sees here that this approximation is strictly valid only for s ≪ b.

Median values of the expected discovery significance Z for different values of s and b are
shown in Fig. 1 (from [1, 2]). The solid curve shows Eq. (10), the dashed curve gives the
approximation s/

√
b, and the points are the exact median values from Monte Carlo. The

structure seen in the points is due to the discrete nature of the data. One sees that Eq. (10)
provides a much better approximation to the true median than does s/

√
b in regions where

s ≪ b does not hold.

4



b

-110 1 10 210

|1
]

0
m

ed
[Z

0

2

4

6

8

0,A
q  

b  s / 

 exact

s = 2

s = 5

s = 10

Figure 1: The median, assuming a mean
number of signal events s, of the discovery
significance Z for different values of s and
b (from [1, 2]; see text).

5 Poisson case with uncertain background

If the expected number of background events, b, is not known one must treat it as a nuisance
parameter in the likelihood function. Because b could be adjusted to accommodate any
observed number of events, it would be impossible to reject the hypothesis of s = 0 unless
some additional information is introduced that constrains b. Often this is done by means of
a control measurement by counting the number of events m in a data sample where signal
events are believed to be absent, and where the mean number of events can be related to the
number of background events in the primary measurement of n. For example, one may take
m as following a Poisson distribution with a mean of τb, where τ is a scale factor that we
take here as known with negligible uncertainty.

The full likelihood function that describes both the primary measurement n and the con-
trol measurement m is therefore the product of the two corresponding Poisson distributions:

L(s, b) =
(s+ b)n

n!
e−(s+b) (τb)

m

m!
e−τb . (12)

This problem has been studied in both particle physics and astrophysics (see, e.g., [1, 3, 4,
5]). To find the profile likelihood ratio one needs the estimators for b and s as well as the
conditional estimator for b given a value of s:

ŝ = n−m/τ , (13)

b̂ = m/τ , (14)

ˆ̂
b(s) =

n+m− (1 + τ)s+
√

(n+m− (1 + τ)s)2 + 4(1 + τ)sm

2(1 + τ)
. (15)

For the statistic q0 one needs in particular
ˆ̂
b(0), which from Eq. (15) is

ˆ̂
b(0) =

n+m

1 + τ
. (16)

As in Sec. 4 we use the approximation Z =
√
q0, valid in the large sample limit, which

gives
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Z =

[

−2

(

n ln

[

n+m

(1 + τ)n

]

+m ln

[

τ(n+m)

(1 + τ)m

])]1/2

(17)

for n > b̂ and Z = 0 otherwise. This is the same as Eq. (17) of Ref. [3] and Eq. (25) of
Ref. [5].

As in Sec. 4 we replace the data values n and m by their expectation values s+ b and τb
to give the “Asimov” approximation for the median significance. Making this substitution in
Eq. (17) gives

ZA =

[

−2

(

(s+ b) ln

[

s+ (1 + τ)b

(1 + τ)(s+ b)

]

+ τb ln

[

1 +
s

(1 + τ)b

])]1/2

. (18)

The case where the control measurement m has a small relative statistical uncertainty corre-
sponds to τ very large, and in this limit Eq. (18) reverts to the expression for known b given
by Eq. (10).

It is useful to re-express Eq. (18) in terms of the uncertainty one would quote on the
background on the basis of the control measurement m. The estimator for b is given by
Eq. (14), and because the variance of m is equal to its mean, τb, the variance of b̂ is

V [b̂] ≡ σ2
b =

b

τ
. (19)

Using this equation to eliminate τ from (18) gives the result

ZA =

[

2

(

(s+ b) ln

[

(s+ b)(b+ σ2
b )

b2 + (s+ b)σ2
b

]

− b2

σ2
b

ln

[

1 +
σ2
bs

b(b+ σ2
b )

])]1/2

. (20)

By expanding this expression in powers of s/b and σ2
b/b one finds

ZA =
s

√

b+ σ2
b

(

1 +O(s/b) +O(σ2
b/b)

)

. (21)

One sees that that the expression given in Eq. (7) and justified on intuitive grounds results
from the significance based on Wilks’ theorem and use of the Asimov data set. The simple
formula given by Eq. (21) is expected to be valid in cases where one has s ≪ b and σ2

b ≪ b.
From Eq. (19) we have σ2

b/b = 1/τ , and because the expectation value of m is E[m] = τb,
the requirement σ2

b ≪ b is equivalent to E[m] ≫ b or τ ≫ 1. That is, the expected number of
events in the control region should be large compared to the expected number of background
events contributing to the primary measurement of n (and in addition s ≪ b must hold).

Figure 2 shows the median discovery significance for s = 2, 5 and 10 as a function of b
for (left) several values of σb/b and (right) several values of τ . In each plot the upper set of
curves (points) corresponds to the smaller σb/b or larger τ . The points are based on Eq. (17)
and computed with Monte Carlo. The structure in the points is due to the discreteness of
the Poisson distributed data. The dashed and solid curves show the predictions of Eqs. (7)
and (20), respectively. Although both of these formulae agree with the Monte Carlo values
for sufficiently large b, the full formula from Eq. (20) is clearly in far better agreement for
low b. This is understandable because for decreasing b the ratios s/b and σ2

b/b become large
and thus the approximation of Eq. (7) is expected to break down.
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Figure 2: The median, assuming an expected number of signal events s = 2, 5 and 10 of the discovery
significance Z as a function of the expected number of background events b for (left) several values of
σb/b and (right) several values of τ (see text).
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6 Conclusions

A simple expression for the expected discovery significance is given by Eq. (20), which can be
used for a counting experiment in which the expected number of background events is uncer-
tain. Specifically the formula treats the case where the expected background is constrained
by a control measurement consisting of a Poisson distributed value. In the limit of small
background uncertainty and also a small signal rate (s ≪ b), Eq. (20) reduces to Eq. (7),
which has been used in particle physics. The numerical studies shown, however, indicate
that for important ranges of background rate and uncertainty, the limiting formula severely
overestimates the expected discovery significance, whereas the full formula is in very good
agreement with exact Monte Carlo results.
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