TAE Statistics Problem

The purpose of this exercise is to design a statistical test to discover a signal process by counting events in a detector. Suppose the detector can for each event measure a quantity x with $0 \leq x \leq 1$, for which probability density functions (pdfs) are for signal (s) and background (b),

$$
\begin{align*}
& f(x \mid s)=3(1-x)^{2} \tag{1}\\
& f(x \mid b)=3 x^{2} \tag{2}
\end{align*}
$$

1(a) Suppose for each event we test the hypothesis that it is background. We reject this hypothesis if the observed value of x is less than a specified cut value $x_{\text {cut }}$. Find the value of $x_{\text {cut }}$ such that the probability to reject the background hypothesis (i.e., accept as signal) if it is background is $\alpha=0.05$. (The value α is the size or significance level of the test.)
1(b) For the value of $x_{\text {cut }}$ that you find, what is the probability to accept an event with $x<x_{\text {cut }}$ given that it is signal. (This is the power of the test with respect to the signal hypothesis or equivalently the signal efficiency.)
1(c) Suppose that the expected number of background events is $b_{\text {tot }}=100$ and for a given signal model one expects $s_{\text {tot }}=10$ signal events. Find the expected numbers of events s and b of signal and background events that will satisfy $x<x_{\text {cut }}$ using the value of $x_{\mathrm{cut}}=0.1$.
1(d) Assuming the numbers from 1(c), the prior probabilities for an event to be signal or background are

$$
\begin{align*}
& \pi_{s}=\frac{s_{\mathrm{tot}}}{s_{\mathrm{tot}}+b_{\mathrm{tot}}}=0.09 \tag{3}\\
& \pi_{b}=\frac{b_{\mathrm{tot}}}{s_{\mathrm{tot}}+b_{\mathrm{tot}}}=0.91 \tag{4}
\end{align*}
$$

Based on these values, what is the probability for an event to be signal given that one finds $x<x_{\text {cut }}$. (Recall Bayes' theorem or consult arXiv:1307.2487.)
$\mathbf{1 (e)}$ Now suppose we do the experiment and observe n_{obs} events in the search region $x<x_{\mathrm{cut}}$. We now want to test the hypothesis that $s=0$ (the background-only hypothesis or " b "), against the alternative that signal is present with $s \neq 0$ (the " $s+b$ " hypothesis).

The actual number of events n found in the experiment with $x<x_{\text {cut }}$ can be modeled as following a Poisson distribution with a mean value of $s+b$. That is, the probability to find n events is

$$
\begin{equation*}
P(n \mid s, b)=\frac{(s+b)^{n}}{n!} e^{-(s+b)} \tag{5}
\end{equation*}
$$

Suppose for a certain $x_{\text {cut }}$ one has $b=0.5$ and we find there $n_{\text {obs }}=3$ events. The p-value of the background-only hypothesis is the probability, assuming $s=0$, to find $n \geq n_{\text {obs }}$.

$$
\begin{equation*}
p=P\left(n \geq n_{\mathrm{obs}} \mid s=0, b\right)=\sum_{n=n_{\mathrm{obs}}}^{\infty} \frac{b^{n}}{n!} e^{-b}=1-\sum_{n=0}^{n_{\mathrm{obs}}-1} \frac{b^{n}}{n!} e^{-b} \tag{6}
\end{equation*}
$$

Find the p-value and from this find the significance with which one can reject the $s=0$ hypothesis, defined as

$$
\begin{equation*}
Z=\Phi^{-1}(1-p) \tag{7}
\end{equation*}
$$

where Φ is the standard cumulative Gaussian distribution and Φ^{-1} is its inverse (the standard Gaussian quantile). For more information see Sec. 10 of arXiv:1307.2487. You will need the cumulative chi-square distribution and the quantile of the Gaussian distribution, which from ROOT are available as 1 - TMath: :Prob and TMath: :NormQuantile.
$\mathbf{1 (f)}$ The expected (median) significance assuming the $s+b$ hypothesis of the test of the $s=0$ hypothesis is a measure of sensitivity and this is what one tries to maximize when designing an experiment. It can be approximated with a number of different formulas. For $s \ll b$ one can use $\operatorname{med}\left[Z_{b} \mid s+b\right]=s / \sqrt{b}$. If $s \ll b$ does not hold, a better approximation is

$$
\begin{equation*}
\operatorname{med}\left[Z_{b} \mid s+b\right]=\sqrt{2\left((s+b) \ln \left(1+\frac{s}{b}\right)-s\right)} \tag{8}
\end{equation*}
$$

Using Eq. (8), find me median significance for $x_{\text {cut }}=0.1$. If you have time, try to write a program to find the value of $x_{\text {cut }}$ that maximizes the median significance.
$\mathbf{1}(\mathrm{g})$ Now suppose that for each event we do not simply count the events having x in a certain region but we design a test that exploits each measured value in the entire range $0 \leq x \leq 1$. The data thus consist of the number n of events, which follows a Poisson distribution with mean of $s+b$, and the n values x_{1}, \ldots, x_{n}.

We can define a test statistic to test the background-only hypothesis that is a monotonic function of the likelihood ratio L_{s+b} / L_{b},

$$
\begin{equation*}
q==-2 \ln \frac{L_{s+b}}{L_{b}}=-2 \sum_{i=1}^{n} \ln \left[1+\frac{s_{\mathrm{tot}}}{b_{\mathrm{tot}}} \frac{f\left(x_{i} \mid s\right)}{f\left(x_{i} \mid b\right)}\right]+C \tag{9}
\end{equation*}
$$

where C is a constant that can be dropped. The motivation for this statistic is described further in Sec. 5.1 of arXiv:1307.2487.

From http://www.pp.rhul.ac.uk/~cowan/stat/invisibles/mc/ download the program invisibleMC.cc and the makefile. Build and run the program. This will produce histograms of q under the $s+b$ hypothesis, and also a histogram of q (called $\left.h_{-} q_{-} s b\right)$ and it will find the median $q, \operatorname{med}[q \mid s+b]$.

You should add code in analogy with this that generates data according to the backgroundonly $(s=0)$ hypothesis. Generate 10^{7} experiments and count how many have $q<\operatorname{med}[q \mid s+b]$. The fraction with $q<\operatorname{med}[q \mid s+b]$ is the median p-value of the background-only hypothesis. Find this and from it find the median significance Z (the sensitivity). Compare to the values you found from Eq. (8).

