Statistical analysis of data:
course outline
Main topics (approx. 10 lectures):
- Probability.
Definition and interpretation,
random variables, probability density functions,
expectation values, transformation of variables, error propagation.
- Examples of probability functions.
Binomial, multinomial,
Poisson, uniform, exponential, Gaussian, chi-square, Cauchy distributions.
- The Monte Carlo method.
Random number generators, the
transformation method, the acceptance-rejection method.
- Statistical tests.
Significance and power of a test,
choice of the critical region. Constructing test statistics: the Fisher
discriminant, neural networks. Testing goodness-of-fit, chi^2-test,
P-values.
- Parameter estimation: general concepts.
Samples, estimators, bias. Estimators for mean, variance, covariance.
- The method of maximum likelihood.
The likelihood function,
ML estimators for parameters of Gaussian and exponential distributions.
Variance of ML estimators, the information inequality, extended ML,
ML with binned data.
- The method of least squares.
Relation to maximum likelihood,
linear least squares fit, LS with binned data, testing goodness-of-fit,
combining measurements with least squares.
- Interval estimation.
Classical confidence intervals: with
Gaussian distributed estimator, for mean of Poisson variable. Setting
limits, limits near a physical boundary.
Optional topics:
- Overview of Bayesian statistics.
The Bayesian method: subjective
probability and Bayes' theorem. Relation of ML and Bayesian parameter
estimation. Bayesian limits.
- Characteristic functions.
Definition and properties,
use to obtain moments, use of addition theorem,
deriving limiting cases of distributions, the central limit theorem.
- Unfolding.
Formulation of the problem: response function and
matrix. Inversion of the response matrix, bin-by-bin correction
factors. Regularized unfolding: regularization functions, bias
and variance of estimators, choice of regularization parameter.
Glen Cowan